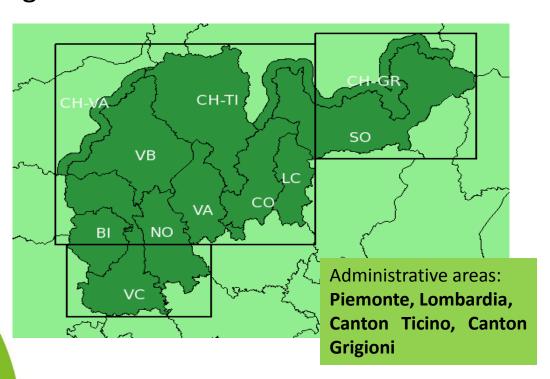


Le opportunità non hanno confini

HELI-DEM: integrazione dei dati di altezza transfrontalieri fra Italia e Svizzera



Project objective

Creation of a unified digital terrain model, for the Alpine and Sub-Alpine area on the border between Italy and Switzerland, correctly geo-referenced in the three dimensions

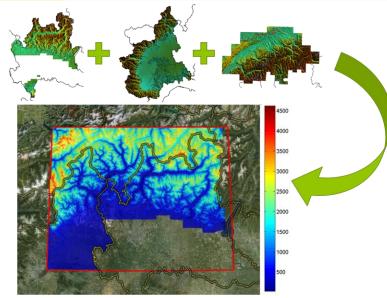
www.helidem.eu

DTM elaboration
throughout the
coordination and fusion
of all the available
information

Project duration and WP

20 September 2010 - 19 September 2013

<u>WP</u>	<u>Title</u>
WP1.	Management
WP2.	Data collection and analysis of different sources (DTM & geoid)
WP3.	Verification of existing DTMs and geoids
WP4.	Experimenting cross-border GNSS networks
WP5.	Unification of height datum (geoid) between Switzerland and Italy
WP6.	External validation & geo-referencing of DEM
WP7.	Integration of validated available height data
WP8.	Experimenting of dare elaborated by the project and evaluation of the results
WP9.	Dispatch and valorisation of the research results

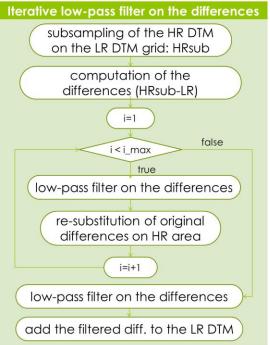


Data source integration

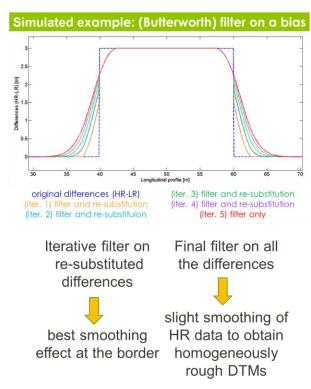
Available LR DTMs								
DTM	Reference Frame	Coordinate System	Resolution	# Points				
Lombardy	Roma40 – GB	Cartographic	20 m	29'287'577				
Piedmont	ETRF89 - UTM	Cartographic	5 m	607'997'593				
Switzerland	ETRF89	Geographic	~25 m	19'400'361				

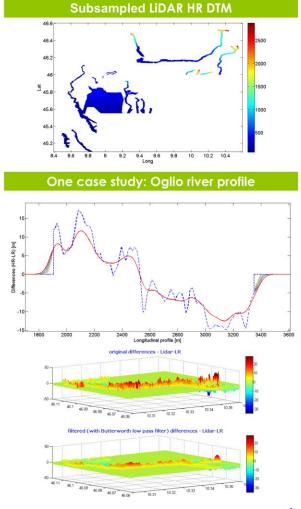
- √ Transformation of the three DTMs to the ETRF2000 reference frame geographic coordinates,
- \checkmark Creation of the nodes of the grid for the unified DTM (φ, λ coordinates of the nodes),
- ✓ Independent interpolation of the three original DTMs on the unified grid nodes. Interpolation performed by bicubic surface:
 - parameters estimate by LS with the 32 nearest points,
 - · number of points increased in case of ill conditioning,
- ✓ Average of the results where overlap exists,
- ✓ Correction of the DTM over the *lakes*:
 - · creation of the contour of the lake,
 - to each point of the lake: a constant elevation given by the median of the original lake values.

Unified DTM								
DTM	Reference Frame	Coordinate System	Resolution	# Points				
One regional LR unified DTM	ETRF2000	Geographic	ϕ = 2*10 ^{-4°} , ~22 m λ = 2*10 ^{-4°} , ~15 m	~ 116'000'000				



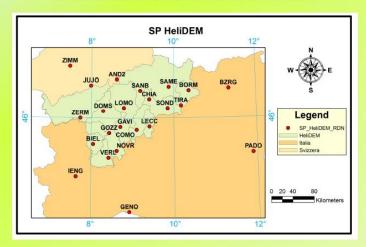
Correction of DTM with LiDAR HR DTM (Italy only)


A LiDAR HR DTM covering some hydrographic basins of Lombardy and Piedmont, with planimetric resolution of 1*10⁻⁵ ° (~1m) is available and can be used to correct the LR unified DTM.


3.00

How to avoid sharp discontinuities at the HR-LR transition?

Re-substitution of the original differences every step allows to work preferably on the less accurate LR DTM.



Cross-border GNSS network

1. GNSS cross-border network

Establishment of a GNSS cross-border network for:

DTM validation

Both static and NRTK survey on points that can be easily found on a DTM

Experimentation of a possible future service

NRTK positioning with fixed ambiguity phase at different heights

2. CORSs network validation (NRTK positioning)

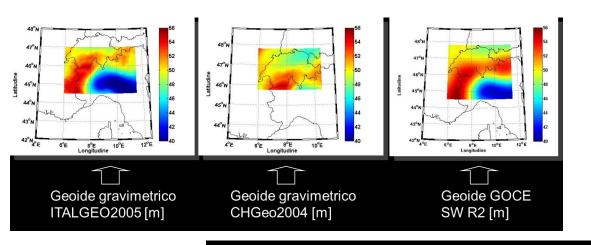
Single epoch kinematic positioning:

- ✓ Session length of about 40' with fixed ambiguity phase
- √ Compared with static post-processed solution obtained in a multi-base mode with a commercial software

Station	Height [m]	µ _{2D}	μ_{h}	$\sigma_{ exttt{2D}}$	σ_{h}
Varallo	485	0.012	-0.081	0.006	0.015
Alagna	1200	0.013	-0.055	0.007	0.019
Pianalunga	2050	0.017	-0.009	0.011	0.029
Indren	3260	0.005	0.000	0.009	0.024

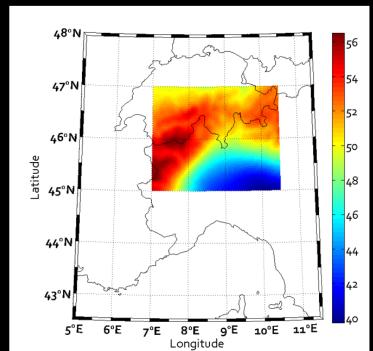
Good performances of the HELIDEM network even at high altitudes

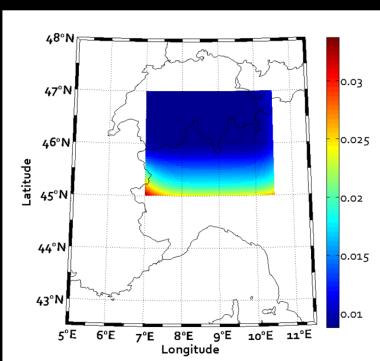
Punta Indren (3260 m)


Positioning with relatively lower quality at lower altitudes Increase the density of (

L

Increase the density of CORSs stations in areas with extreme changes of altitude




Geoid

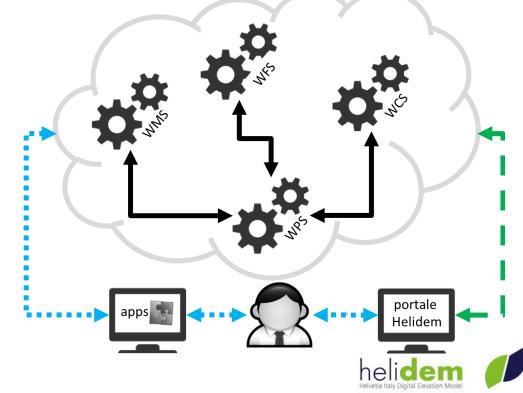
EGU: A least-squares colloCATION procedure to merge local geoids with the aid of satellite-only gravity models: the italian/swiss geoids case study

Estimated variance

Istituto Scienze della Terra (Institute of Earth Science)

Geoportal Objective

 Disseminate the HELI-DEM results by means of a geospatial portal capable to offer some of the most common operations applied to DTMs.

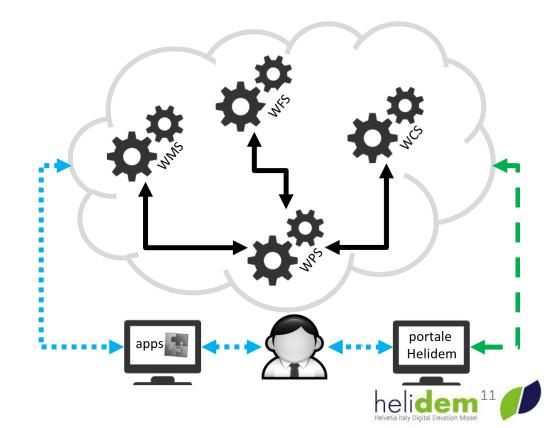


Architecture

The portal implement a distributed architecture based on Web services and OGC interoperability

standards.

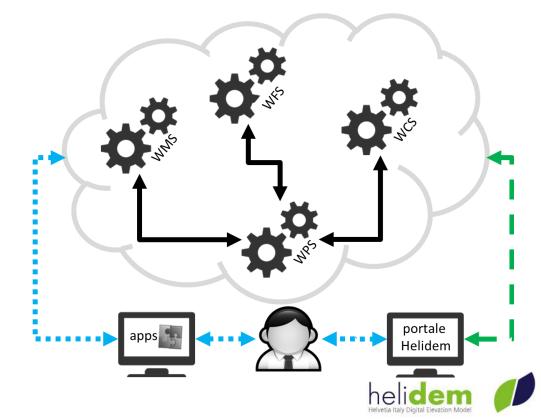
- Web Map Service
- Web Feature Service
- Web Coverage Service
- Web Processing Service



Raster data access

WCS: defines rules and logic for raster data access

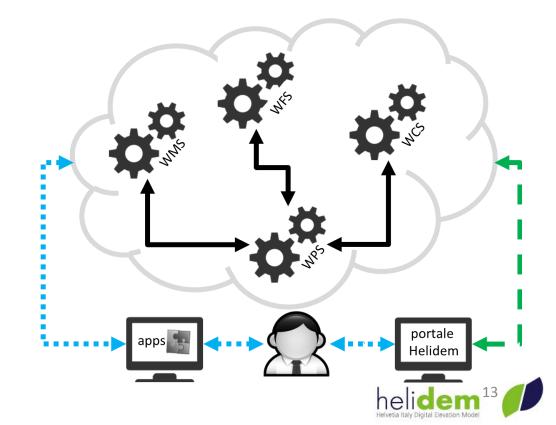
- Get Capabilities
- DescribeCoverage
- GetCoverage



Processing

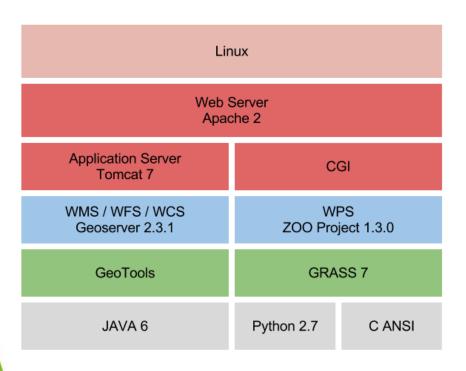
WPS: defines the rules to access preprogramming elaborations and/or models that applies to geospatial data.

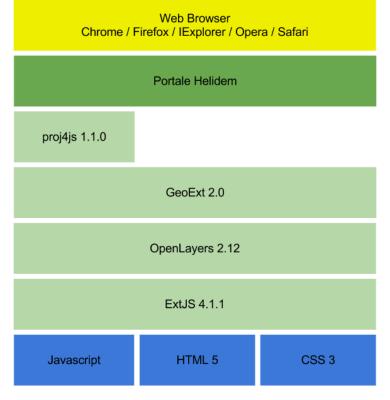
- Get Capabilities
- DescribeProcess
- Execute


Results dissemination

WFS/WMS: define rules to access vector data

and raster images


- Get Capabilities
- DescribeFeatureType
- GetFeature
- LockFeature
- Transaction
- GetPropertyValue
- GetFeatureWithLock
- CreateStoredQuery
- DropStoredQuery
- ListStoredQueries
- Describe Stored Queries



Software e languages

Server side

Client side

Processing capabilities

- Contours lines extraction at defined heights or interval
- Profile extraction on polyline
- Delineation and hydro-morphological characterization of basins
- Calculation of DTM derivatives (slope, aspects, curvatures, etc.)
- DTM extraction of selected area
- Coordinate conversion of features (general precisions provided by EPSG parameters)

SUPSI

For further information: geomatica@supsi.ch

http://geoservice.ist.supsi.ch/helidem