

Modeling of the "Plan da Mattun" Archaeological Site

using a combination of different sensors

David Novák, David Grimm, Piotr Tokarczyk Institute of Geodesy and Photogrammetry ETHZ

Situation

Situation 3089 Gaschurn Mathon Zeinisjoch 97 Compatsch 980 Partenen 1582 Spiss 1842 Galtür llen 5 1828 Samnaun 31,46 Hochmaderer eidel **TeM**űndin 2036 Scl and 32.93 Bielerhöhe To Muttler üelspitz Nauders Fluchthorn 3398 Martina 1035 Gr. Litzner Tschlin ALL STUD lan^kda N 8 9 nbiel 2808 Tasna Silvrettahorn Ramosch APLad Resch 1513 Q Rest GI P. Buin Verstanclahorn Vereina S-chalambert P. Linard 243 Reschei a Rojen Ftan ahor g Scuo 2926 Guarda Ardez P. Lischana 2100 Elferspitze arasp 1464 Flüela Wisshorn Lavin

9th Swiss Geoscience Meeting 2011

Eidgenössische Technische Hochschule Zür swiss Federal Institute of Technology Zuri

Archeological Site Plan da Mattun

- finds derive from early alpine dwellers (time of Ötzi)
- overhanging boulders where used as shelter

Plan da Mattun

Plan da Mattun

Archaeological Site Plan da Mattun

- The archaeological site "Plan da Mattun" belongs to the project «Silvretta historica» and is part of the "Alpine Archäologie in der Silvretta"
- This is a project of the department of Pre- and Protohistory of the Institute of History, University Zurich under the leadership of Dr. Thomas Reitmaier
- Geodetic Project Course of the Institute of Geodesy and Photogrammetry, ETH Zurich
 - Participation of 19 students
 - Duration of 3 weeks

Surveying Work

Goal

Digital terrain model of

•rock stream (located at the end of the valley)

•four larger boulders (2 to 15 meters high)

Challenge

Rough terrain (400m x 200m) at 2400m a.s.l.

-Difficult to access certain areas

–Requires multiple measuring techniques to cover all the objects of interest

Solution

Rock stream

–Combination of laser scanning and unmanned aerial vehicle (UAV) photogrammetry.

Boulders

-Laser scanner, terrestrial and UAV photogrammetry.

Georeferencing

- Geodetic reference system within the Swiss coordinate system LV95
- Swipos service could not be used (lack of mobile phone reception)
- Reference points were measured by static GNSS and corrected with a virtual reference station (VRS) in advance. Points used for a GNSS reference station.
- Measure the ground control points for the photogrammetry in real time. (horizontal accuracy of 2 cm and 5 cm in height)
- The georeferencing of the scans was done by
 - Measuring the scanner position
 - Using several sphere targets with known coordinates

Measuring Equipement

Data Processing

Data Processing

- Digital terrain model (DTM) created with UAV photogrammetry and with terrestrial laser scanner
- Boulders with close range photogrammetry and laser scanner
- Terrestrial laser scanner as base with a resolution of 10 cm
- UAV images with a resolution of 2 cm
- Combination to create a final DTM of 10 cm
- Combined in Geomagic

Processing Chain

UAV-Flight Planning

UAV-Camera Calibration

9th Swiss Geoscience Meeting 2011

te of Technology Zu

UAV-Flight

9th Swiss Geoscience Meeting 2011

16

Ettik Eldgenössische Technische Hochschule Zür Swiss Federal Institute of Technology Zuric

UAV-Ground Control Points Measurement

Results – Model from TLS

Results – Model from UAV

Results – Combined Model (TLS & UAV)

Results – Required Time Frame

Pure photogrammetric time frame

Manual	
Туре	Time (for experts)
Flight planning	2 h
Flight	3 h
Camera calibration	0.5 h
Image sorting & clean up	2 h
Ground control point measurements in images	2 h
Exterior orientation assignment	2 h
Automated	
Automated tie point measurement & bundle adjustment	2 h
DTM extraction	Preparation 7 h
Orthophoto generation	3 h = Flight
Total	~24 h
21 Oth Styles Cassolance Meeting 2014	ETH

9th Swiss Geoscience Meeting 20

Conclusion

- UAV photogrammetry time consuming
- Laser scanner not so mobile
- Combination of laser scanner and photogrammetry is a major improvement over either technique alone
- Dataset for the archaeologists

Thank You

