

Technical challenges for geological surveys in model building and validation

Swiss Geoscience Meeting 2009

2009/11/21 - Roland Baumberger & Nils Oesterling

3D modelling at Swiss Geological Survey Aims

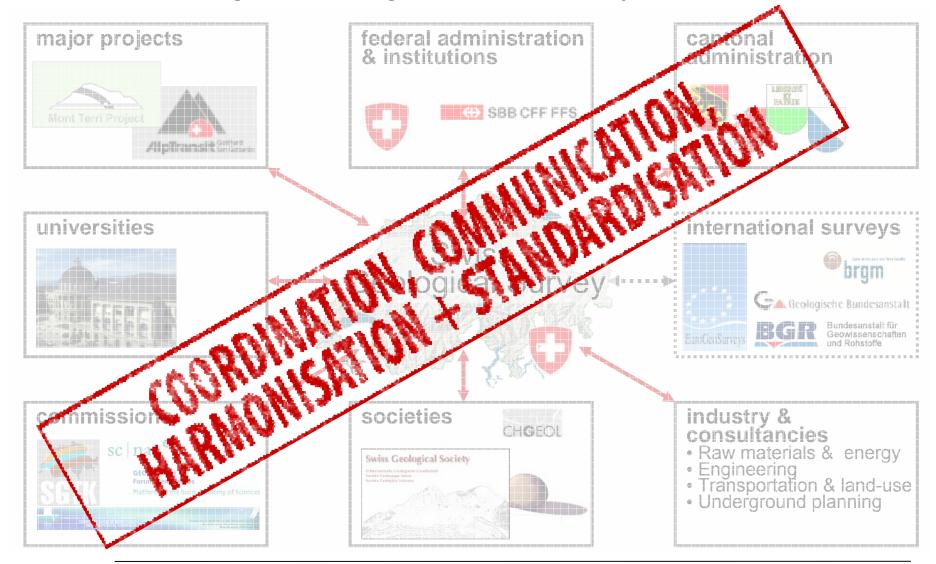
- 1. To elaborate principles, knowledge and know-how in the domain of geological 3D modelling
- 2. To offer valid, geologically consistent and area-wide (national, regional, local) 3D models in different scales and resolutions
- 3. To establish a know-how transfer between economy, administration, research and the Swiss Geological Survey
- 4. To integrate geological 3D models into applications and/or products of swisstopo or external partners
- 5. To develop and of new products and services based on the geological 3D models
- → To ease the communication on geology (especially with interested laymen)
- → To encourage the understanding of geology in the broad public

3D modelling at Swiss Geological Survey Setting the focus

The Swiss federal law on geoinformation

- Geoinformationsgesetz (§27)
- Landesgeologieverordnung (§5 and §10)
- → No authority for the SGS to other institutions

Special position of the SGS


- Editor's office for geological maps → no mapping/sampling campaigns
- Public institution → in the eyes of the public
- → No own data
- → Special requirements concerning quality of 3D models

Consequences

5 major challenges for geological 3D modelling

Challenge 1

Heterogeneous geo-community

Challenge 2 Model building

Data acquisition – no common data source

- Data sources are widely distributed
- Their existence is sometimes uncertain/sparsely known
- → Identification of data owners and data producers

Data preparation – no standards defined

- Data quality depends on the producer and shows big differences
- → Assessment of the data (quality, age and reliability) is mandatory

Data storage - no common understanding

- Technical backgrounds and approaches are varying
- Different concepts of data management and 3D modelling
- → Standardisation is needed (data management, interoperability)

Challenge 3 Model validation

@ SGS, most of the data originate from third parties

Input data reliability

- Which data (sub-)set is the most reliable? Purpose of usage?
- → Definition of data assessment criteria

Geological consistency, accuracy & QC

- How to achieve consistent & accurate geological 3D models?
- How to achieve high quality from potential uncertain data?
- 3D models vs. traditional mapping corelations?
- → Definition of detailed workflows and checklists
- → Definition of criteria concerning quality management and quality control

Challenge 3 Example

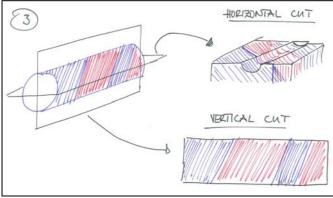
Some schematic examples

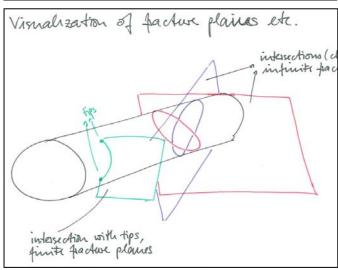
2D	retro- and prograde restoration
	sedimentation simulation/analysis
3D	restoration 0° shear angle
	restoration 45° shear angle

Challenge 4 Version management

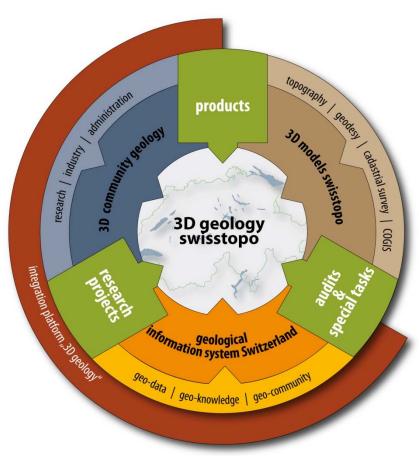
Data history

- What data has been used?
- Which version has been used?
- Who was the author?
- Who was the publisher?
- → Introduction of a detailed version management

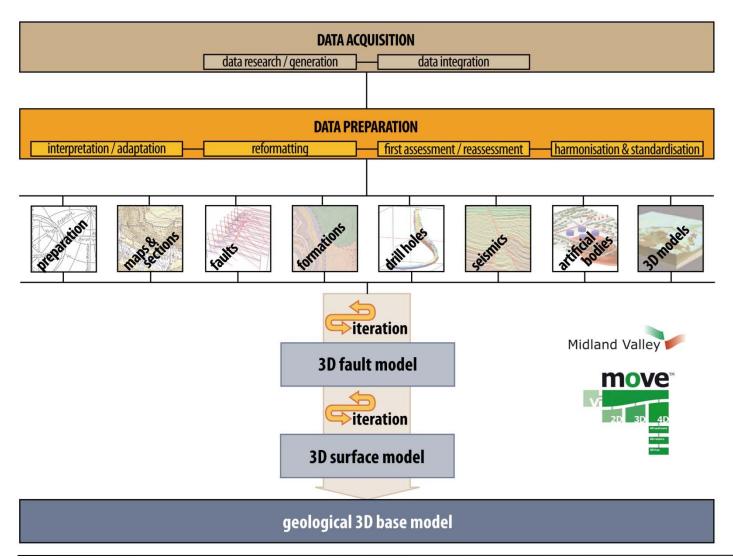

Challenge 5 Special requirements

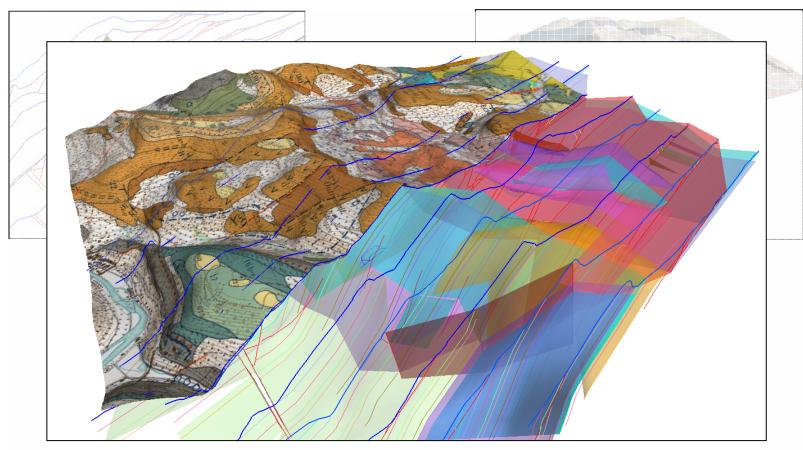

Professional interfaces

- → increasing level of complexity
- → high level of detail


Application

- Mont Terri rock laboratory
- Sectoral plan deep geol. repositories
- Spatial planning
- Infrastructural planning
- Resources and raw materials
- Foundation analysis
- Management of natural hazard
- etc.


Managing the challenges (1) External cooperation


- → Cooperation with Swiss geocommunity
- → Establishing a 3D Community Switzerland
- → Integration to 3D models developed by swisstopo
- → Focus on three domains
 - research projects
 - audits & special task
 - products
- → Integration of existing 3D models of third parties
- → Based on a conceptual data model

O

Managing the challenges (2) Generic workflow

Managing the challenges (3c) The geological 3D base model

Basics

(Poly-)lines, polygones & surfaces (TIN, multi-z as well<)

Questions & answers

Thank you for your attention.

Contact:

roland.baumberger@swisstopo.ch