The geotype concept to develop GIS oriented analysis in engineering geology applications

<u>P. Turberg</u>, A. Parriaux : Ecole Polytechnique Fédérale de Lausanne (EPFL) -Laboratory of Environmental and Engineering Geology

M. Kalbermatten, F. Golay : *Ecole Polytechnique Fédérale de Lausanne (EPFL)* – Geographical information systems laboratory

J.-M. Lance: *Etablissement d'assurance contre l'incendie et les éléments naturels du Canton de Vaud.*

Rationale	Method Application	Results	Conclusions
-----------	--------------------	---------	-------------

Outline

- I. Rationale
- II. Proposed method: geotype & SIG
- III. Application at the regional scale
- IV. Resulting GIS maps
- V. Discussion and Conclusions

SGM 2008 - Lugano - 21-23 nov. 08

Is a geological translation needed ?

heterogeneous in time, cartographic approach and cartographic data

Original geological data

 local and complex information

Rationale	Method	Application	Results	Conclusions
-----------	--------	-------------	---------	-------------

« heterogeneous in time, cartographic approach and cartographic data »

- 32 maps are concerned
- Chronology of these maps:
 - Until 1950
 - Until 1970
 - Until 1990
 - Until 2007
- \Rightarrow Quaternary deposits
- \Rightarrow Associated phenomena
- \Rightarrow Discordance at the limits of maps

Why not using directly the information from geological maps?

Frequent not concording geological information between maps

Extrait des cartes 1241 et 1242 de l'Atlas géologique de la Suisse au 1:25'000 (légendes non indiquées)

Examples:

- a) Alpine moraine (left)& Jura moraine(right)
- b) Ground moraine (left)& Jura fluvioglacialdeposit (right)
- c) Stable moraine(left) & unstable moraine (right)

Map 1241 (Marchairuz)

Map 1242 (Morges)

2 km

Rationale	Method	Application	Results	Conclusions
-----------	--------	-------------	---------	-------------

« local and complex information »

- ⇒ Local differences not always necessary
- ⇒ Chronostratigraphic differences not always necessary
- ⇒ Differenciation of tectonic units not always necessary

Why not to use directly the information from geological maps?

Geological information is too complex for the actual needs of territorial management

Extrait de la carte 1265 de l'Atlas géologique de la Suisse au 1:25'000 (légendes non indiquées)

Examples:

- a) Differentiation of tectonic units: Préalpes médianes thrust nappe (left) and Simme s.l nappe (right)
- b) Chronostratigraphic differentiation : Eocene
 flysch (fe) and late
 cretaceous flysch (fcs)

Map 1265 (Les Mosses)

1 km

If geological maps are directly used for application maps ?

Not concording geological information between maps

Extrait des cartes 1241 et 1242 de l'Atlas géologique de la Suisse au 1-25'000 (légendes non indiquée

Too complex geological information

Extrait de la carte 1265 de l'Atlas géologique de la Suisse au 1:25'000 (légendes non indiquées

- Regional approach is more difficult
- More difficult to combine with territorial objects
- More complex extraction of information (GIS)
- Difficult to integrate in a semi-automatic analytic process
- Model is less optimized for a given applications

GEOLOGICAL TRANSLATOR « GEOTYPES »

What's a geotype?

\rightarrow A « geotype» is a lithostratigraphic or genetic group with similar properties

A geotype is qualified according to the way it belongs to three levels, from the more to the least detailed. Evompla 1 1 1 Evenanda 7

	Exemple 1	Exemple 2	
A general level made of 5 major groups of geological formations.	Hard rocks s.l.	Alluvial deposits s.l.	
An intermediate level made of 11 groups of lithological formations	Carbonated rocks	Lacustrine deposits	
A detailed level made of 41 geotypes	Dolomitic limestones	Ground lacustrine deposits	
and a unique code associated to each of them	CD	LF	10

Example of a translation geology - geotype

Exemple of a too complex geological information for the actual needs of territorial management

Extrait de la carte 1265 de l'Atlas géologique de la Suisse au 1:25'000 (légendes non indiquées)

Map 1265 (Les Mosses)

Extrait de la carte nationale 1265

Map 1265 (Les Mosses)

Geological map

Geotype map

Rationale	Method	Application	Results	Conclusions
-----------	--------	-------------	---------	-------------

Realized application

Map of foundation soils of the canton of Vaud, Switzerland (framework: seismic microzoning)

F2

lacustre) d'une épaisseur supérieure à 10 m.

Glissements de terrain actifs ou susceptibles d'être réactivés.

geophysical, etc.)

Rationale	Method	Application	Results	Conclusions
-----------	--------	-------------	---------	-------------

Realized application

Map of foundation soils of the canton of Vaud, Switzerland (framework: seismic microzoning)

Translation of geotype into foundation soils

Extrait de la carte nationale 1265

Map 1265 (Les Mosses)

Extrait de la carte nationale 1265

Map 1265 (Les Mosses)

Results at the scale of canton of Vaud

• Mapping over 3200 km² - 6 different contractors working in parallel

Results at the scale of canton of Vaud

SOILS OF FOUNDATION

Rationale	Method	Application	Results	Conclusions
-----------	--------	-------------	---------	-------------

Contribution from GIS

Conditions	Answer	GIS input
With existing data	Geological maps + boreholes + others	For quality checking of existing data
With good reliability, traceability and coherence	Geotype, local experts, explicit steps	For traceability and results control
Over a minimum time period	Parallel cartographic work	For semi-automatization of tasks
With acceptable cost investment	Two cartographic phases	For optimizing the surface to be mapped
With good maintenance and diffusion capabilities	Explicit translation, link with borehole database	For actualization and on line consultation

Rationale	Method	Application	Results	Conclusions
-----------	--------	-------------	---------	-------------

Comments on geotypes

- Geotypes appear to be robust and allow an effective adaptation of the base geological information to present needs in regional territorial management.
- Geotypes were developed for the geological context of the canton of Vaud but can certainly be **generalized**.
- Geotypes allow an advanced GIS exploitation of geological data and therefore valorize these.
- Geotypes aren't a base mapping method and cannot replace standard geological surveys.

Rationale	Method	Application	Results	Conclusions
-----------	--------	-------------	---------	-------------

Perspectives

- Use this geotype-GIS method in other domains (groundwater, natural hazard, geothermal potential, archeology, etc.)
- Multiple possibilities to associate geological information to other geographical information (modelling)
- Use in geological database
- Didactic tool to facilitate geological diffusion

