Quantification of net Hg0 exchange in a subalpine grassland using micrometeorological methods.

Obrist, D., Conen F., Vogt R., Siegwolf R.*, Alewell C.

Department of Geosciences, University of Basel, Switzerland

*Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland

Atmospheric elemental mercury (Hg0) is an important environmental pollutant which is readily distributed to pristine and remote ecosystems (Fitzgerald et al. 1998). Soils and vegetation can act as sinks or sources for atmospheric Hg0, but the magnitude and direction of Hg0 exchange fluxes over intact terrestrial ecosystems is unclear due to a dearth of direct exchange flux measurements. The goal of this study was to quantify Hg0 exchange processes over a subalpine grassland using two different methods. The first approach was a 222Rn/Hg0 accumulation method during stable nocturnal boundary layer conditions when absolute concentration of Hg0 and of the trace gas 222Rn change according to the source or sink strength of the underlying landscape (Denmead et al. 1996). Hg0 fluxes can be calculated by comparing absolute concentration changes of Hg0 to those of a conservative tracer gas such as 222Rn with a constant and known degassing rate (e.g., Conen et al. 2002). The second method applied was a Modified Bowen Ration approach which is a gradient-based micrometeorological method and can be applied during turbulent periods.

Significant 222Rn accumulations in the nocturnal boundary layer were observed in 14 of 40 nights with concurrent and significant increases in atmospheric Hg0 concentrations being very small and significant only nine times (Figure 1). The calculated Hg0 flux using a measured 222Rn emission of 52 Bq m$^{-2}$ h$^{-1}$ was a small net deposition flux averaging -0.2 ±0.3 ng m$^{-2}$ h$^{-1}$. Hg0 exchange flux measured using the Modified Bowen Ratio averaged -1.44±0.24 ng m$^{-2}$ h$^{-1}$ (Figure 2). Thus, both methods applied in this subalpine grassland indicated that the net flux of Hg0 was a very small net deposition of atmospheric Hg0 to the ecosystem. These results contrast some earlier studies which reported significant net Hg0 emissions from uncontaminated terrestrial soils and vegetated ecosystems to the atmosphere (Obrist et al. 2004; Lindberg et al. 1998).

Our results imply that terrestrial ecosystems might also be net sinks for atmospheric Hg0, and that their role in the global Hg cycling might be very site specific differing largely among various geologic substrates, soil types, climates, and plant communities.

Figure 1. Concentrations of 222Rn (black symbols; left axis) and Hg0 (gray symbols; right axis) at a subalpine grassland in Switzerland. The 14 regression lines (solid black lines) represent periods with significant accumulation of 222Rn—and hence stable nocturnal boundary layer periods—used to calculate Hg0 emissions.

3rd Swiss Geoscience Meeting, Zürich, 2005
Figure 2. Daily Hg0 exchange fluxes calculated by Modified Bowen Ratio method. Positive fluxes denote emission from the grassland to the atmosphere, negative fluxes denote net deposition to the grassland. * and (*) denote significant gradients and fluxes at the 5\% and 10\% significance level, respectively, using Students t-tests.

REFERENCES

